As markets grow more complex, demand planning without advanced analytics is increasingly impractical. Demand planning excellence is a critical competitive advantage. Inaccurate forecasting has become a primary obstacle to achieving supply chain KPIs. Mastering proper forecasting methods delivers: Enhanced customer service levels Reduced inventory holdings,Lower operational costs than competitors.
Sharing of demand planning/inventory control processes and daily work details from Gartner Top global supply chain enterprises, Digital empowerment integration methods for practical business;~50% class time dedicated to supply chain modeling and live Excel training, Strong practicality – transitioning from knowledge to implementation. Through this course, you can gain the following benefits: Knowledge Framework、Best Practice Workflows、Practical Implementation、Digital Enablement.
——Why do supply chain planning?
——Purpose of demand planning
——Importance of demand planning – Absorbing sales volatility
——Sources of demand planning data
——Forecast hierarchy and granularity – At what dimension should we forecast?
——Time horizon and granularity – How long should demand plans cover?
——Difference between demand forecasting and demand planning
——Gartner best-practice demand planning processes
——Daily routines of planners at best-practice enterprises
II. Rapid Business Understanding Through Data Analysis
——Historical sales data types for demand planning
——Live Excel demo: ABC classification modeling
——Live Excel demo: XYZ analysis modeling
——Demand interval analysis
——Live Excel demo: Demand interval modeling
——Trend analysis – Upward/stable/downward trends
——Live Excel demo: Trend analysis modeling
——Live Excel demo: Seasonality analysis modeling
——Quarter-end surge analysis
——Practical applications of sales data analysis/tagging
III. Baseline Fcst
——Live Excel demo: Moving Average Model
——Live Excel demo: Single Exponential Smoothing Model
——Live Excel demo: Trend Exponential Smoothing Model
——Live Excel demo: Linear Regression Model
——Live Excel demo: Seasonal Model
——Introduction to Granger Causality Algorithm
——Statistical Forecasting Model Maturity Introduction
——Machine Learning Model Algorithms Introduction
——Feature Engineering for ML Models Introduction
——Accuracy Comparison: ML vs Traditional Statistical Models
——Application Scenarios for ML/Statistical Models
IV. Event Management & Process
——What does event management include?
——Event management、 Sales anomaly analysis、 Customer anomaly analysis、 Forecast anomaly analysis introduction and Excel modeling demo
——Tracking Signal analysis Excel modeling demo
——End-to-end Supply Chain Control Tower overview
——Multi-version scenario simulation introduction
——How to forecast new products and high-value/low-frequency products?
——Demand Review meeting KPIs introduction
——Forecast accuracy Excel modeling demo
——Demand consensus KPI - On-time delivery rate introduction
——On-time delivery rate Excel modeling demo
——Digital empowerment for demand planning support
——Key drivers of inventory
——Holistic inventory reduction framework
VI. Reducing Cycle Stock via Planning Capability
——Finished goods replenishment strategies: MRP, ROP, MTO
——Demand-driven MRP vs Reorder Point mode
——MRP definition & value: From "material shortage" to "precision supply"
——MRP input data analysis
——Lot sizing rules: Lot-for-Lot, Fixed Lot, EOQ
——Increasing replenishment frequency to reduce cycle stock
——Improving inventory visibility to reduce month-end stock
——Cross-border e-commerce case study: Reducing cycle stock via planning granularity (Excel demo)
VII. Optimizing Safety Stock via Formula Enhancement
——Safety stock drivers - Demand/supply uncertainty
——Safety stock drivers - Customer service level
——Inventory policy's impact on service level
——Safety stock Excel modeling demo
——Safety stock calculation for promotions (e-commerce/FMCG)
——Non-normal distribution safety stock calculation
——Normality test using K-Test
——Safety stock formula for non-normal distributions
VIII. Reducing Obsolete/Slow-moving Stock via Monitor
——Aging report monitoring - Inventory age structure
——Slow-mover monitoring - Inventory vs sales/forecast comparison
IX. Sharing Other Inventory Optimization Solutions
——Production Priority
——Procurement Order Decomposition
——Procurement Order/Production Quantity Priority Pegging
——Significance of Priority Restructuring - Part
——Significance of Priority Restructuring - Part
——Data Modeling & Implementation for Production Planning Priority Pegging
——Visual Samples for Production Planning Priority Pegging
X. Power BI Sales and Fcst Report Visualization Practical Drill
——Introduction to Power BI
—— Data Preparation in Power BI
—— Unpivoting Operations: Converting Horizontal to Vertical Data Structures
—— Data Modeling and Table Relationship Logic
—— Data Import and Interface Overview
—— Visual Chart Operations Demonstration
—— Common Formulas in Power BI
—— Hands-on Visualization Practice
15年世界五百强端到端供应链计划团队管理和实战经验,
耐消/电商/医疗/化工/工业品/汽配等行业从业经验,
先后在贺利氏,德司达,施耐德电气,赛默飞世尔,江森自控等公司担任计划经理,资深计划经理;
现任某制造业世界五百强Asia Senior S&OP Manager
Gartner全球供应链Top1公司供应链计划管理经验,供应链爱迪生专家
中物联电子行业供应链计划专家组成员,供应链计划专家
带领团队获得2018年 国际预测协会IBF(Institute of Business Forecasting and Planning)颁发的2018年全球需求计划最佳实践
丰富的供应链数字化转型项目落地经验,多次主导供应链数字化项目;精通编程语言Python和可视化工具Power BI(2018年微软MVP),擅长使用统计学和运筹学算法与实际业务结合,赋能管理决策
I.需求计划理论知识
15年世界五百强端到端供应链计划团队管理和实战经验,
耐消/电商/医疗/化工/工业品/汽配等行业从业经验,
先后在贺利氏,德司达,施耐德电气,赛默飞世尔,江森自控等公司担任计划经理,资深计划经理;
现任某制造业世界五百强Asia Senior S&OP Manager
Gartner全球供应链Top1公司供应链计划管理经验,供应链爱迪生专家
中物联电子行业供应链计划专家组成员,供应链计划专家
带领团队获得2018年 国际预测协会IBF(Institute of Business Forecasting and Planning)颁发的2018年全球需求计划最佳实践
丰富的供应链数字化转型项目落地经验,多次主导供应链数字化项目;精通编程语言Python和可视化工具Power BI(2018年微软MVP),擅长使用统计学和运筹学算法与实际业务结合,赋能管理决策
MFGEvent为上海议睿会展服务有限公司旗下面向中国制造业供应链高级经理人的知名专业服务品牌,议睿拥有一支了解制造型企业不同行业特点的专家团队,专注并致力于向客户提供专业化的供应链解决方案,议睿运用良好的网络资源优势、专家背景优势和强大的社会资源优势,帮助企业解决生产运营难题,是业内公认的制造业资源服务平台。